Search results for "Locally compact space"

showing 10 items of 17 documents

Multiplicative loops of 2-dimensional topological quasifields

2015

We determine the algebraic structure of the multiplicative loops for locally compact $2$-dimensional topological connected quasifields. In particular, our attention turns to multiplicative loops which have either a normal subloop of positive dimension or which contain a $1$-dimensional compact subgroup. In the last section we determine explicitly the quasifields which coordinatize locally compact translation planes of dimension $4$ admitting an at least $7$-dimensional Lie group as collineation group.

CollineationAlgebraic structureDimension (graph theory)Topology01 natural sciencesSection (fiber bundle)TermészettudományokFOS: MathematicsCollineation groupLocally compact space0101 mathematicsMatematika- és számítástudományokMathematicsAlgebra and Number TheoryGroup (mathematics)010102 general mathematicsMultiplicative function20N05 22A30 12K99 51A40 57M60Lie groupMathematics - Rings and AlgebrasSections in Lie group010101 applied mathematicsTranslation planes and speadsMultiplicative loops of locally compact quasifieldRings and Algebras (math.RA)Settore MAT/03 - Geometria
researchProduct

On a multiplication and a theory of integration for belief and plausibility functions

1987

Abstract Belief and plausibility functions have been introduced as generalizations of probability measures, which abandon the axiom of additivity. It turns out that elementwise multiplication is a binary operation on the set of belief functions. If the set functions of the type considered here are defined on a locally compact and separable space X , a theorem by Choquet ensures that they can be represented by a probability measure on the space containing the closed subsets of X , the so-called basic probability assignment. This is basic for defining two new types of integrals. One of them may be used to measure the degree of non-additivity of the belief or plausibility function. The other o…

Discrete mathematicsPure mathematicsFuzzy measure theoryApplied MathematicsLebesgue integrationMeasure (mathematics)symbols.namesakeChoquet integralSet functionBinary operationsymbolsLocally compact spaceAnalysisMathematicsProbability measureJournal of Mathematical Analysis and Applications
researchProduct

Fundamental isomorphism theorems for quantum groups

2017

The lattice of subgroups of a group is the subject of numerous results revolving around the central theme of decomposing the group into "chunks" (subquotients) that can then be compared to one another in various ways. Examples of results in this class would be the Noether isomorphism theorems, Zassenhaus' butterfly lemma, the Schreier refinement theorem for subnormal series of subgroups, the Dedekind modularity law, and last but not least the Jordan-H\"older theorem. We discuss analogues of the above-mentioned results in the context of locally compact quantum groups and linearly reductive quantum groups. The nature of the two cases is different: the former is operator algebraic and the latt…

General MathematicsGroup Theory (math.GR)01 natural sciences0103 physical sciencesMathematics - Quantum AlgebraQuantum no-deleting theoremFOS: MathematicsQuantum Algebra (math.QA)Compact quantum groupLocally compact space0101 mathematicsOperator Algebras (math.OA)MathematicsZassenhaus lemmaLocally compact quantum group010102 general mathematicsMathematics - Operator AlgebrasFunctional Analysis (math.FA)AlgebraMathematics - Functional Analysis46L89 46L85 46L52 16T20 20G42Isomorphism theoremQuantum algorithmSchreier refinement theorem010307 mathematical physicsMathematics - Group Theory
researchProduct

Metric Lie groups admitting dilations

2019

We consider left-invariant distances $d$ on a Lie group $G$ with the property that there exists a multiplicative one-parameter group of Lie automorphisms $(0, \infty)\rightarrow\mathtt{Aut}(G)$, $\lambda\mapsto\delta_\lambda$, so that $ d(\delta_\lambda x,\delta_\lambda y) = \lambda d(x,y)$, for all $x,y\in G$ and all $\lambda>0$. First, we show that all such distances are admissible, that is, they induce the manifold topology. Second, we characterize multiplicative one-parameter groups of Lie automorphisms that are dilations for some left-invariant distance in terms of algebraic properties of their infinitesimal generator. Third, we show that an admissible left-invariant distance on a Lie …

Group (mathematics)54E40 (Primary) 53C30 54E45 (Secondary)General MathematicsLie groupMetric Geometry (math.MG)Group Theory (math.GR)AutomorphismManifoldCombinatoricsMetric spaceMathematics - Metric GeometryMetric (mathematics)FOS: MathematicsLocally compact spaceInfinitesimal generatorMathematics - Group TheoryMathematics
researchProduct

The Obstacle Problem in a Non-Linear Potential Theory

1988

M. Brelot gave rise to the concept harmonic space when he extended classical potential theory on ℝn to an axiomatic system on a locally compact space. I have recently constructed1 a non-linear harmonic space by dropping the assumption that the sum of two harmonic functions is harmonic and considering some other axioms instead. This approach has its origin in the work of O. Martio, P. Lindqvist and S. Granlund2,3,4, who have developed a non-linear potential theory on ℝn connected with variational integrals of the type ∫ F(x,∇u(x)) dm(x), where F(x, h) ≈ |h|p.

Harmonic functionObstacle problemMathematical analysisAxiomatic systemHarmonic (mathematics)Locally compact spaceType (model theory)Potential theoryAxiomMathematics
researchProduct

Inversion formulae for the integral transform on a locally compact zero-dimensional group

2009

Abstract Generalized inversion formulae for multiplicative integral transform with a kernel defined by characters of a locally compact zero-dimensional abelian group are obtained using a Kurzweil-Henstock type integral.

Locally compact zero-dimensional abelian group characters of a group Kurzweil-Henstock integral Fourier series multiplicative integral transform inversion formulaSettore MAT/05 - Analisi MatematicaGeneral MathematicsMultiplicative functionMathematical analysisMathematics::Classical Analysis and ODEsLocally compact spaceAbelian groupLocally compact groupIntegral transformInversion (discrete mathematics)MathematicsTatra Mountains Mathematical Publications
researchProduct

Equivalence Relations on Stonian Spaces

1996

Abstract Quotient spaces of locally compact Stonian spaces which generalize in some sense the concept of Stone representation space of a Boolean algebra are investigated emphasizing the measure theoretical point of view, and a representation theorem for finitely additive measures is proved.

Mathematics(all)Representation theoremquotient spaceRiesz–Markov–Kakutani representation theoremGeneral Mathematicsba spacerepresentation of a space of measuresQuotient space (linear algebra)Stone representation spaceAlgebranormal Radon measureStonian spaceEquivalence relationLocally compact spaceStone's representation theorem for Boolean algebrasQuotientfinitely additive measureMathematicsAdvances in Mathematics
researchProduct

New applications of extremely regular function spaces

2017

Let $L$ be an infinite locally compact Hausdorff topological space. We show that extremely regular subspaces of $C_0(L)$ have very strong diameter $2$ properties and, for every real number $\varepsilon$ with $0<\varepsilon<1$, contain an $\varepsilon$-isometric copy of $c_0$. If $L$ does not contain isolated points they even have the Daugavet property, and thus contain an asymptotically isometric copy of $\ell_1$.

Mathematics::Functional AnalysisProperty (philosophy)Function spaceMathematics::Operator AlgebrasGeneral MathematicsHausdorff spaceTopological spaceLinear subspaceFunctional Analysis (math.FA)CombinatoricsMathematics - Functional AnalysisFOS: Mathematics46B20 46B22Locally compact spaceMathematicsReal number
researchProduct

Multiplicative Loops of Quasifields Having Complex Numbers as Kernel

2017

We determine the multiplicative loops of locally compact connected 4-dimensional quasifields Q having the field of complex numbers as their kernel. In particular, we turn our attention to multiplicative loops which have either a normal subloop of dimension one or which contain a subgroup isomorphic to $$Spin_3({\mathbb {R}})$$ . Although the 4-dimensional semifields Q are known, their multiplicative loops have interesting Lie groups generated by left or right translations. We determine explicitly the quasifields Q which coordinatize locally compact translation planes of dimension 8 admitting an at least 16-dimensional Lie group as automorphism group.

Multiplicative loops of locally compact quasifields semifields sections in Lie groups translation planes automorphism groups.Applied Mathematics010102 general mathematicsMultiplicative functionDimension (graph theory)Lie groupField (mathematics)Translation (geometry)01 natural sciences010101 applied mathematicsCombinatoricsKernel (algebra)Mathematics (miscellaneous)Locally compact spaceSettore MAT/03 - Geometria0101 mathematicsComplex numberMathematics
researchProduct

Linear extension operators on products of compact spaces

2003

Abstract Let X and Y be the Alexandroff compactifications of the locally compact spaces X and Y , respectively. Denote by Σ( X × Y ) the space of all linear extension operators from C(( X × Y )⧹(X×Y)) to C(( X × Y )) . We prove that X and Y are σ -compact spaces if and only if there exists a T∈Σ( X × Y ) with ‖ T ‖ Γ∈Σ( X × Y ) with ‖ Γ ‖=1. Assuming the existence of a T∈Σ( X × Y ) with ‖ T ‖ X and Y is equivalent to the fact that ‖ Γ ‖⩾2 for every Γ∈Σ( X × Y ) .

Pure mathematicsAlexandroff compactificationLinear extensionMathematical analysisLinear extension operatorProduct topologyGeometry and TopologyLocally compact spaceProduct spaceSpace (mathematics)MathematicsTopology and its Applications
researchProduct